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ABSTRACT

Measurements of C2
n time series using unattended commericial scintillometers over long time intervals inevitably

lead to data drop-outs or degraded signals. We present a method using Principal Component Analysis (also
known as Karhunen-Loève decomposition) that seeks to correct for these event–induced and mechanically–
induced signal degradations. We report on the quality of the correction by examining the Intrinsic Mode
Functions generated by Empirical Mode Decomposition.
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1. INTRODUCTION

How much information in a time series record is required for the restoration of a full data set from a partial
data set? This question, as it stands, is not answerable. However, if we impose the simplification that the
data set belongs to a certain, well defined class of time series data, then the problem becomes somewhat more
tractable. Another way to phrase the question is to ask how many data points can be deleted (set to zero) from
a 1-D discrete record and still be recoverable? Such a question is prompted by our experimental field work to
record the behaviour of C2

n over time intervals of several weeks, under different climate conditions.1–5 The final
objective of the field work is to produce an accurate now–casting model of the behaviour of optical turbulence
in a littoral environment, based on the local climate record.

The data used in this study are path integrated measures of C2
n measured across the visible to near infrared

region. The instrumentation are two identical OSI LOA-004 systems, which employ aperture averaging to
estimate the value of C2

n. The LOA-004s have been adapted to function in a completely unsupervised mode,
and are generally left unattended over the course of up to a few days during field operation. Naturally spurious
events such as wind gusts can lead to misalignments of the receiver/detector pair, causing data gaps. Although
for some types of data analysis techniques, data gaps of a limited size can be tolerated, this is not universal.
Moreover, there exists a new class of very powerful techniques based on Empirical Mode Decomposition4, 6 that
are exceedingly sensitive to lossy datasets. It is for this reason we are exploring different methodologies to
synthetically fill the data holes; we describe the results from our studies using Principal Component Analysis
in this paper.

2. PRINCIPAL COMPONENT ANALYSIS

The principal components of any ensemble can be used to identify the members of that ensemble. This idea
forms the foundation of face recognition and tracking through eigenfaces (see Turk and Pentland7). We may
extend this method to reconstruct the missing data for any data record under given restrictions. The key point
is that the gappy data record must have the same, or similar, salient features as all the members of the ensemble.
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The principal components are the eigenvectors of the covariance matrix of the data and represent the features
of the dataset. Provided that a reference library can be created, each member of the library will contribute to
each eigenvector, more or less. As such, each member can be exactly represented by a linear combination of
eigenvectors. Any similar data record external to the library will also be represented by a linear combination
of eigenvectors, within a margin of error.

The first step for the filling procedure must therefore be to define the reference library. We may do so by
collecting a family of turbulence data series that share certain specific characteristics; a difficult task since the
definition of such is an open question. Moreover, since the mean value of the family of reference data plays a
key part, all the members of the library would require normalisation. Again how to do this is an open question.
Alternatively we may use the neighbouring record around a data hole, sectioning this information to provide
the ensemble members. We opt for the latter technique since the record pre and post the data hole (within a
certain time interval) ought to be similar in nature to the missing data. The mean value of this type of library
would probably not differ greatly from the mean of the missing data, so normalisation would not be so crucial.

How does one determine the principal components of a reference library? Following Sirovich and Kirby,8

let the M members (each of length N) of the reference ensemble be {ϕn}. Thus, the average data record of this
ensemble will be

ϕ =< ϕ >=
1
M

M∑

n=1

ϕn (1)

It is very reasonable to assume that departures from the mean record will provide an efficient procedure for
extracting the primary features of the data. Therefore, we define

φn = ϕn − ϕ (2)

Now, if we consider the dyadic matrix

C =
M∑

n=1

φnφT
n = AAT (3)

where each term of the sum signifies a second rank tensor product, we can recognize this as the ensemble average
of the two point correlation of the deviations from the mean. Here, AT is the transpose of A.

We require eigenvectors un of the matrix AAT . For ensembles whose members have a large number of points
N > M , matrix AAT issingular and its order cannot exceed M . To find those eigenvectors of AAT corresponding
to nonzero eigen values, Turk and Pentland used a standard singular value decomposition technique, as described
below.

AT Avn = µnvn (4)
AAT Avn = µnAvn

CAvn = µnAvn

where µn are the eigenvalues. This deduction can be equated to

Cun = µnun (5)

where un = Avn. Thus AAT and AT A have the same eigenvalues and their eigenvectors are related through
un = Avn, provided that ||un|| = 1. The treatment described is recognizable as the Karhunen–Loéve (KL)
method.9

The implication is that a dataset with holes, φ′, can be obtained from a limited summation

φ′ ≈
M∑

n=1

anun (6)

where the coefficients an are obtained through the inner product

an = (φ′, un) (7)

within a certain a priori error bound.
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3. PROOF OF CONCEPT

To demonstrate the validity of the assertion of the previous section, we take a perfect data record of C2
n

measurements over a 7 hour period starting from midnight, smoothed by a forward moving rolling average of
60 data points. The data contain 2492 points in total.

To ensure that all parts of the record are similar in terms of characteristics, we first looked to see if it
could be termed self affine. The way to do this is to estimate the fractal dimension D0, which characterises the
roughness of the data, and the Hurst parameter, H , which is a measure of the long range dependence (LRD)
within the data. In principle these two quantities are independent of each other, with D0 being a local measure
and H being global in scope. Nevertheless, in the case of self affine (self similar) sets, the two notions are closely
linked. Mandelbrot’s celebrated relationship between the two variables for self affine sets is10

D0 + H = n + 1 (8)

where n is the dimensionality of the embedding space; n = 1 for our case.

Estimation of both D0 and H from experimental data is fraught with difficulties due to a host of reasons.
We describe the method of estimating D0 by determining the generalised fractal dimensions {Dq; q = 1, 2, 3, ...}
in Chang et al..3

THE FRACTAL DIMENSION

The values of the generalised fractal dimensions obtained through correlation estimators resulted in D0 = 0.9946,
D1 = 0.9620, D2 = 0.9348, D4 = 0.8928. This gives a mean value of 0.9460 and a standard deviation of 0.0431.
We therefore consider the data as a monofractal, with D0 equal to the mean value, rather than a multifractal.11, 12

This means that the data has only one characteristic local scale exponent, regardless of dilation of the length
examined.

THE HURST PARAMETER

There are a slew of methods13 available to estimate H . For simplicity, we have opted to use the well known
Hurst–Mandelbrot R/S technique, which is also the most elementary. The fitting curve for this estimator is
shown in Fig. 1. We find for the Hurst parameter a mean H = 0.99681 with a standard deviation of 0.0069.
Thus D + H = 1.9428, which is within 3% of the ideal result of 2 for a self affine set. This suggests that the
dataset is appropriate as a test platform for our data hole filling method, since it is very similar at all scales.

4. RESULTS

We split up the test data into 21 sections, where all but 1 are members of the reference library, as shown in
Fig. 2. The exclusive section is set to zero, and the algorithm described in Sec. 2 is employed on the 20 library
elements. The reconstructions are created from the KL coeffiecients of the eigenvectors equivalent to the sections
adjacent to the missing data. Hence we will talk of a prior and posterior reconstruction meaning e.g. for omitted
section 5, we use for the prior the KL coefficient equivalent to section 4 and for the posterior reconstruction
we use the coefficient equivalent to section 6 of the test data set. Note that this does not reconstruct those
sections, since the eigenvectors are generated from the entire reference library.

The reconstructions shown in the left hand set of Fig. 3 represent the best level of error, while the right
hand set shows the worst. It is clear that the greater the difference between the (masked off) original data
section and its neighbours, the poorer the reconstruction will be. Nevertheless, the reconstruction errors for the
full set of test data are all 1 order of magnitude less than the mean value of the reconstruction and the original
data segment. Evidently the end points have not been synthesised to be continuous with the adjacent segments
of the reference library signal, as can be seen from the error. A “continuity condition” for the function has
to be imposed on both ends of the reconstructed segment in order to achieve smoothness. The most effective
way to do so is currently being investigated. The eigenvalues determined through this method show a similar
distribution in both cases, with minor variations only at the upper end of the spectrum, implying that the KL
differences between best and worst section for reconstruction is not very large.
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Figure 1. Hurst.
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Figure 2. The test data, split into 21 sections. The data are padded before division with a set of points taken from the
tail of the time series and mirrored outward.
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Figure 3. Best and worst reconstruction result using PCA for (a) section 5 and (b) section 13 respectively. The layout
in each set is : (Top Left) Segment prior to the selection. (Top Middle) The original selected data. (Top Right) Segment
after selection. (Centre Left) The difference between the reconstruction using the coefficient of eigenvector related to the
prior segment and the original. The value shown is the mean absolute difference per pixel. (Centre Right) The (prior)
reconstruction. (Bottom Left) The difference between the reconstruction using the coefficient related to the posterior
segment and the original. (Bottom Middle) The (posterior) reconstruction. (Bottom Right) The eigenvalue spectrum.
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4.1. KL and EMD

We present here the effects of patching the data hole with reconstructions determined from the prior and
posterior terms with respect to the gap.

We apply the Empirical Mode Decomposition (EMD) algorithm14 to the reconstructions. EMD is a novel
adaptive method for separating a nonlinear time series into components, filtering on instantaneous frequency.
The set for the best reconstruction case are illustrated in Figs. 4. We refer to these sets as EMDL and
EMDR. The original data’s intrinsic mode functions (IMFs) and residuals (set EMDO) are also shown and for
comparison, we present the effect of a simple minded linear interpolation between the endpoints of the known
data on the IMFs.

Upon visual inspection, we see that the original data generates 9 components: 8 intrinsic modes and 1 residual
(the stopping criterion for our EMD implementation is the same as in Huang et al6). On the other hand, the
interpolated data have only 8 components. Numbering the IMFs from highest instantaneous frequency to lowest,
starting from IMF 1, we can see by inspection that both EMDL and EMDR are strongly similar to EMDO in
IMFs 4,5,6 and 7. The differences appear in the higher frequency components, due to the discontinuity between
the inserted segment and the unadulterated data. The endpoint discontinuities evidently modify the variances
of IMFs 1,2 and 3, although it seems that they are only affected in the area local to the discontinuity, per IMF.

By way of comparison, a linear interpolant between the edges of the known data show that there is con-
tamination all through the IMFs. It is so strong that IMF 7, which in the other sets clearly distinguishes the
baseline rise and fall of the turbulence over the interval under study, is unable to pick out a clean pedestal.

5. CONCLUSIONS

We have discussed a data hole filling method for optical turbulence data, a necessary step to be able to use Em-
pirical Mode Decomposition for the analysis of the time series record. The Principal Components or Karhunen–
Loève eigenvectors from an ensemble of neighbouring sections of complete data around a data hole can be used
to reconstruct the missing segment to a reasonable degree of accuracy, at least for the purposes of applying
EMD. We have shown that the edge continuity is important, although the effect of discontinuities is not uni-
versal through all the intrinsic modes of the data. The quality of the reconstruction is much better using PCA
than a simplistic linear interpolant (or merely ignoring the data gap).
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Figure 4. (Top Left) The IMFs 1 to 8 (top to bottom) and the residual trend line of EMDO , generated by applying
Empirical Mode Decomposition to the test data. (Top Right) The IMFs 1 to 7 (top to bottom) and the residue, generated
from data with a linear interpolant across section 5 of the test data. (Bottom Left) The IMFs 1 to 7 and the residue of
EMDL, generated from data using the PCA reconstruction method with the coefficient of the prior section. (Bottom
Right) The IMFs 1 to 7 and the residue of EMDR, generated from data using the PCA reconstruction method of the
posterior section.
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